Modulation of voltage-dependent and inward rectifier potassium channels by 15-epi-lipoxin-A4 in activated murine macrophages: implications in innate immunity.
نویسندگان
چکیده
Potassium channels modulate macrophage physiology. Blockade of voltage-dependent potassium channels (Kv) by specific antagonists decreases macrophage cytokine production and inhibits proliferation. In the presence of aspirin, acetylated cyclooxygenase-2 loses the activity required to synthesize PGs but maintains the oxygenase activity to produce 15R-HETE from arachidonate. This intermediate product is transformed via 5-LOX into epimeric lipoxins, termed 15-epi-lipoxins (15-epi-lipoxin A4 [e-LXA4]). Kv have been proposed as anti-inflammatory targets. Therefore, we studied the effects of e-LXA4 on signaling and on Kv and inward rectifier potassium channels (Kir) in mice bone marrow-derived macrophages (BMDM). Electrophysiological recordings were performed in these cells by the whole-cell patch-clamp technique. Treatment of BMDM with e-LXA4 inhibited LPS-dependent activation of NF-κB and IκB kinase β activity, protected against LPS activation-dependent apoptosis, and enhanced the accumulation of the Nrf-2 transcription factor. Moreover, treatment of LPS-stimulated BMDM with e-LXA4 resulted in a rapid decrease of Kv currents, compatible with attenuation of the inflammatory response. Long-term treatment of LPS-stimulated BMDM with e-LXA4 significantly reverted LPS effects on Kv and Kir currents. Under these conditions, e-LXA4 decreased the calcium influx versus that observed in LPS-stimulated BMDM. These effects were partially mediated via the lipoxin receptor (ALX), because they were significantly reverted by a selective ALX receptor antagonist. We provide evidence for a new mechanism by which e-LXA4 contributes to inflammation resolution, consisting of the reversion of LPS effects on Kv and Kir currents in macrophages.
منابع مشابه
Activation of Inward Rectifier Potassium Channels in High Salt Impairment of Hydrogen Sulfide-Induced Aortic Relaxation in Rats
Introduction: Hydrogen sulfide (H2S) plays a key role in the regulation of vascular tone and protection of blood vessels against endothelial dysfunction. Since the mechanism of salt impairing H2S-induced vascular relaxation is not fully clear, therefore this study was designed to investigate the role of potassium (K+) channels in the vasodilatory effects of exogenous H2S in rat aortic rings.&nb...
متن کاملStrong voltage-dependent inward rectification of inward rectifier K+ channels is caused by intracellular spermine
Inward rectifier K+ channels mediate the K+ conductance at resting potential in many types of cell. Since these K+ channels do not pass outward currents (inward rectification) when the cell membrane is depolarized beyond a trigger threshold, they play an important role in controlling excitability. Both a highly voltage-dependent block by intracellular Mg2+ and an endogenous gating process are p...
متن کاملThe inward rectifier potassium channel Kir2.1 is expressed in mouse neutrophils from bone marrow and liver.
Neutrophils are phagocytic cells that play a critical role in innate immunity by destroying bacterial pathogens. Channels belonging to the inward rectifier potassium channel subfamily 2 (Kir2 channels) have been described in other phagocytes (monocytes/macrophages and eosinophils) and in hematopoietic precursors of phagocytes. Their physiological function in these cells remains unclear, but som...
متن کاملIon channels in microglia (brain macrophages).
Microglia are immunocompetent cells in the brain that have many similarities with macrophages of peripheral tissues. In normal adult brain, microglial cells are in a resting state, but they become activated during inflammation of the central nervous system, after neuronal injury, and in several neurological diseases. Patch-clamp studies of microglial cells in cell culture and in tissue slices d...
متن کاملIonic channels in murine macrophages
In this paper we examine the different voltage or calcium-dependent currents present in murine peritoneal macrophages, and in a macrophage-like cell line, J774. Three of these are K currents while the fourth is carried by Cl. One K current, activated by hyperpolarization, has all the characteristics of the inward rectifier found in egg or muscle cells. It appears in peritoneal macrophages only ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of immunology
دوره 191 12 شماره
صفحات -
تاریخ انتشار 2013